هذه تجربة ممتعة باستخدام علبة السفن آب
158716011606 15701576.11.flv – 5.29MB
رابط التحميل :
http://www.zshare.net/download/65747240b7b40a/
^_^ عجيييييييييب
هذه تجربة ممتعة باستخدام علبة السفن آب
158716011606 15701576.11.flv – 5.29MB
رابط التحميل :
http://www.zshare.net/download/65747240b7b40a/
^_^ عجيييييييييب
قوة الفاكهة
هل تعرف أن بعض أنواع الفاكهة والخضروات التي تأكلها قد تساعدك أيضاً في توليد الكهرباء؟ جرب هذا وسترى النتائج!
المواد والأدوات[LIST][*][*]3 حبات ليمون (الليمون الصغير مقبول) [*]3 قطع معدنية نحاسية لامعة (استخدمنا "البنس" الأمريكي) [*]3 براغي مصفحة بالزنك [*]4 أسلاك، ويفضل مع مشابك متحركة على النهايات. [*]سكينة صغيرة [*]ملصقات ورقية صغيرة [*]صمام ثنائي حاجب للضوء (LED) ذو فولت منخفض. استخدمنا الجزء 276-330 من الاهتزاز اللاسلكي. [*]وعاء بلاستيكي 35 ملم، أو وعاء صغير مماثل. استخدم وعاء غير شفاف ويفضل وعاء أسود وليس مصنوع من البلاستيك الشفاف. [*]إبرة أو مثقب صغير. [/LIST]يمكنك العثور على البراغي المصقولة بالزنك من متاجر المعدات الصلبة كما تدعى البراغي الجلفانية. إن طلاء الزنك موجود لمنع صدأ البرغي المعدني مما يعطيها مظهر لامع. يمكنك العثور على الأسلاك مع المشابك من متاجر المعدات الصلبة أو لدى مزودي المعدات الكهربائية.
ماذا تفعل
قم أولاً بعصر كل حبات الليمون واحدة تلو الأخرى واضغط عليها بيدك وأعصرها حتى تصبح الليمونة لينة وهدف هذا هو إخراج السائل من الليمون. وهذه الخطوة هامة جداً لأنها تساعدك في الحصول على أقصى النتائج من الليمون.
قم بدفع ومن ثم لف برغي مصقول بالزنك في أحد حبات الليمون أي 1/3 من النهاية. وبواسطة السكين قم بحذر بقطع 1 سم (3/4 إنش) في الليمونة أي إلى 1/3 من النهاية الأخرى.
تحذير: يفضل أن يستخدم السكين شخص بالغ وفي جميع الحالات استعمل السكين ببطء وحذر.
قم بإدخال العملة النحاسية في القطع حتى تدخل نصف العملة داخل الليمونة.
ملاحظة: تأكد من استخدام عملة لامعة لهذا الغرض. وإذا كانت قديمة وقاتمة قم بتلميعها بواسطة ألياف سلكية.
صدق أو لا تصدق، تستطيع الآن الحصول على كهرباء من الليمون!! فإنها تعمل مثل الدارة الكهربائية حيث أن العملة هي القطب الموجب (+) والبرغي هو القطب السالب (-). ولسوء الحظ فإنها دارة ضعيفة جداً ولكن إذا كان لديك دارتين أخرتين يمكنك وصلها معاً وستحصل على بطارية ليمون.
قم بإضافة العملات والبراغي إلى الليمونتين الأخريين بنفس الطريقة التي قمت بها أولاً. ومن ثم باستخدام الأسلاك والمشابك قم بوصل دارات الليمون الثلاث مع بعضها البعض حيث يتصل برغي الليمونة الأولى بعملة الليمونة الثانية وهكذا. قم بإضافة أسلاك ومشابك إلى العملة الأولى وإلى البرغي الأخير أيضاً.
وأخيراً، قم بتأشير المشبك من العملة الأولى بإشارة (+) ومشبك البرغي الأخير بإشارة (-) ومثل البطارية الحقيقية فإن لبطارية الليمون قطب موجب (+) وقطب سالب (-).
لقد قمنا بالوصل بطريقة تدعى وصل السلسلة حيث تعمل حبات الليمون مع بعضها لتوليد الجهد نفسه أو القوة الكهربائية كبطاريتين ضوئيتين صغيرتين ما بين 2.5 إلى 3 فولتات. ولكن بطارية الليمون هذه لا تولد تيار كهربائي يكفي لإشعال مصباح كهربائي.
كيف يمكننا أن نتأكد من أننا صنعنا بطارية بالفعل؟ إن إحدى الطرق هي وصلها بجهاز إلكتروني لا يحتاج لأكثر من 2.5 إلى 3 فولت ولكنه لا يتطلب تيار كهربائي قوي. ويدعى هذا الجهاز صمام ثنائي حاجب للضوء أو (LED) للاختصار. إن الفولتات المنخفضة والتيار المنخفض قد يضيئا الصمام الثنائي.
إن مواصفات حزمة الصمام الثنائي هي: 5 ملم لون أحمر و1.8 فولت و20 أمبير. ويعني هذا أن قطر هذا الجهاز هو 5 ملم. وأنه يتطلب 1.8 فولت و 20 مل أمبير من التيار ليضيء. وبالفعل فإن الصمام سيضيء بشكل باهت بأقل من 20 مل أمبير، إن بطارية الليمون خاصتنا لها فولتات كافية ولكن ليس لديها مل أمبير كافي.
باستخدام المسمار، قم بوخز حفرتين بحذر على جوانب علبة الفلم، نصف العلبة من الأسفل. قد تود مساعدة شخص بالغ للقيان بذلك.
ثم، ضع ملصق بعلامة + على إحدى الثقوب وملصق – على الثقب الآخر.
لف أسلاك الصمام الثنائي بمنحنى بسيط. ثم راقب الصمام بشدة. إنه مستدير على الأغلب. لكن، إذا قمت بثنيه بطريقة معينة، ستكون قادراً على رؤية سطح مستوي قرب أحد الأسلاك. والسلك القريب من هذا السطح هو الحد السالب. في الصورة، يكون السلك على اليسار هو الحد السالب للصمام. هل تستطيع رؤية سطح مستوي صغير في السلك على اليسار؟
رتب الحد السالب لسلك الصمام مع الثقب "-" في علبة الفلم. ادخل الصمام إلى داخل العلبة. لف السلك السالب للصمام من خلال الثقب "-"، والآخر (الطرف الموجب) من خلال الثقب "+".
اسحب الأسلاك من خلال الثقوب وضعهما في مكان مع الملصقات. أضف الملصقات في أعلى العلبة كذلك. تأكد أن الصمام يكون مواجهاً لها.
دعنا نحضر كل شيء للحظة الحاسمة. اربط الجانب "+" من علبة الصمام مع المشبك "+" من بطارية الليمون. ضع المشبك "-" من بطارية الليمون قرب الجانب "-" من العلبة.
نحن مستعدون الان! اربط الطرف الموجب من الصمام مع الطرف الموجب لبطارية الليمون. اربط الطرف السالب من الصمام بالطرف السالب لبطارية الليمون. سيضيئ الصمام!!
الصمام خافت الإضاءة بسبب التيار الكهربائي الصغير من البطارية. تساعدك العلبة القاتمة اللون على رؤية الضوء الخافت. تعمل نهايات الصمام مثل العدسات المكبرة. عندما تنظر مباشرة في نهاية الصمام، يمكن رؤية الضوء بسهولة.
يثبت هذا أنك قمت بعمل بطارية ليمون!! تهانينا!!
حل المشاكل
إذا كنت لا تستطيع رؤية ضوء الصمام، جرب هذه التعديلات:
[LIST=1][*]
[*]
[*]
[/LIST]
[LIST][*]
[/LIST]
[LIST][*]
[*]
[*]
[*]
[/LIST]
[LIST][*]
[/LIST]
[LIST][*]
[/LIST]
قوة الفاكهة
دائرة كهربائية كبيرة الحجم!
إليك طريقة للتفكير جيداً بفكرة بطارية الليمون. لقد قمنا بذلك باستخدام حوض مطلي بالزنك وقدر ساخن أسفله نحاسي وزجاجة من عصير الليمون.
بواسطة بودرة تنطيف وألياف سلكية قمنا بتنظيف بعض بقايا الطبخ من قاع الإناء لكي يكون اتصال النحاس مباشراً أكثر في الدائرة الكهربائية.
ثم قمنا بوضع ماء مقطر في الحوض لعمق 1.2 سم تقريباً (أي إنش) ووضعنا ثلاثة أغطية أوعية بلاستيكية في الماء لكي نضع الإناء فيها. يمكنك استخدام أية أوعية صغيرة لتضع فيها الإناء بشرط أن تكون مصنوعة من البلاستيك أو الزجاج أو الخشب أو الحجر أو أية مادة أخرى غير موصلة للكهرباء، لذلك لا تقم باستخدام المعادن. فإن الفكرة هي إبقاء قاع الإناء إلى الأعلى قليلاً بحيث لا يلامس قاع الحوض.
ثم قمنا بوضع الإناء أعلى الأغطية بحيث يلامس النحاس الماء. ثم وضعنا ما يقارب 35 مل (أي 1/8 كأس من عصير الليمون. إن وضع الكمية بالضبط أمر غير هام فلقد استخدمنا كمية كافية لنحصل على محلول مخفف من عصير الليمون.
وبهذا تكون الدارة الكهربائية لحوضنا جاهزة! قمنا أولاً باستخدام جهاز قياس معاملات متعددة للحصول على فكرة عن الأداء الكهربائي. كما هو الأمر بالنسبة لدارة الليمون الكهربائية فإن النحاس أسفل الحوض كان القطب الموجب (+) وكان الحوض المطلي بالزنك القطب السالب (-). وهي ظاهرة بالسلكين الأحمر والأسود على التوالي في الصورة أدناه.
كانت النتائج مثيرة. وكان الجهد الكهربائي هو نفسه بالنسبة لبطارية الليمون ولكن أكثر بقليل. لقد توقعنا هذا لأن الجهد في تلك البطارية هو فعلاً بسبب الاختلافات في الخواص الكهربائية للنحاس والزنك بحضور الأحماض (في هذه الحالة فهو حمض الستريك والأحماض الأخرى في عصير الليمون المخفف). في الصورة أدناه تم ضبط جهاز قياس المعاملات المتعددة إلى 2.5 فولت. وتشير الإبرة إلى أكثر من 1.0 فولت. وفي خلية الليمون حصلنا على 0.9 فولت وربما قد حصلنا على فولتات أكثر لأن هنالك سائل فقط بين الزنك والنحاس في الحوض. وفي الليمون هنالك ألياف ومواد أخرى بالإضافة إلى عصير الليمون ويمكن أن يولد هذا بعض المقاومة لتيار الكهرباء.
أصبحت الأمور مذهلة فعلاً عندما قسنا التيار وفي الصورة على اليمين أعلاه فإن جهاز قياس المعاملات مضبوط على 500 مل أمب (mA) ويعني هذا أن المقياس الكامل سيقارب 0.5 أمبير وحسب المقياس فلقد حصلنا على أكثر من 150 mA. ومع خلية الليمون حصلنا على 1000/1 مثل التيار! نعتقد أن هذا لأن لدينا زينك ونحاس أكثر ملامس للحامض في خلية الحوض أكثر من خلية الليمون.
وبعد ذلك أردنا أن نعثر على طريقة أخرى غير استخدام جهاز قياس المعاملات المتعددة لنبين أن هذه الطريقة تنتج جهد وتيار كهربائي. قمنا بتعليق صفيحة معدنية، وخمن ماذا حصل؟ لم تضيء الدارة!!! وكان السبب أن الجهد لم يكن عالياً بشكلٍ كافٍ.
لذا بدأنا بالتفكير بدارة كهربائية كبيرة حيث ربما أمكننا العثور أو القيام بشيء حيال ذلك. قمنا أولاً بلف بعض الأسلاك حول بوصلة مغناطيسية وعرفنا أن التيار الكهربائي الذي يمر خلال هذه العقد يولد مغناطيس كهربائي وإذا استطعنا صنع مغناطيس كهربائي قوي بشكلٍ كافٍ فإنه سيحرك إبرة البوصلة المغناطيسية. ستنجح هذه الطريقة فقط إذا كان هنالك تيار كافٍ في السلك. وتلك صورة السلك الملفوف أربع لفات حول البوصلة. وأما إبرة البوصلة المغناطيسية فهي موجهة للجهة الشمالية الجنوبية بسبب مجال الأرض المغناطيسي. وفي الصورة فإن الأسلاك الملفوفة موجهة أيضاً إلى الاتجاه الشمالي الجنوبي وإبرة البوصلة تحتها.
ثم وصلناها بأقطاب دائرة الحوض.
تحركت الإبرة! تلك صور البوصلة المغناطيسية مع الدارة غير المكتملة (الصورة على اليسار) والدارة المكتملة (الصورة على اليمين), هل تستطيع أن تفرق بين زاويتي الإبرتين؟
إن البوصلة التي استخدمناها كانت مملوءة بالسائل وهي مصممة بهذه الطريقة للحد من اهتزازات الإبرة لنتمكن من قراءتها بسهولة أكثر. ولكن هذا أعطى الإبرة بعض المقاومة للحركة. فكرنا باستخدام بوصلة غير ثابتة والتي لا تحتاج إبرتها للكثير من القوة لكي تتحرك. بدأنا بحلقة واحدة من الأسلاك فقط للمتعة.
وعندما قمنا بوصل الدارة، رأينا الإبرة تتحرك!
ملاحظة: إن الإبرة في هذه الصورة تتحرك في الاتجاه المعاكس للإبرة في البوصلة السابقة, هل تعرف لماذا؟ تلميح: أنظر إلى اتجاه لف السلك
.
ومن ثم قمنا بفك العقدة وجربناها فقط مع السلك فوق البوصلة. وحيث أن السلك لم يلتف فإن التيار في السلك لن يولد مجال مغناطيسي قوي جداً. هل سيكون قوياً بشكل كافٍ لتحريك الإبرة. كانت الطريقة الوحيدة لمعرفة هذا هي التجربة!
كما ترى في الصورة أعلى اليمين تحركت الإبرة عندما كانت الدارة متصلة! وكان هذا مثيراً حقاً لأننا حصلنا على النتائج نفسها التي خرج بها "هانز أورستي"د عام 1819 عندما اكتشف لأول مرة هذا الاتصال بين الكهرباء والمغناطيسية باستخدام سلك واحد وبوصلة تماماً مثلما فعلنا.
أنظر على سيبل المثال this biography of Oersted. فلم تكن لديه خلية حوض لمصدر الكهرباء التي حصل عليها! ولكن من كان يعتقد أن حوضنا الذي يحتوي على عصير الليمون المخفف قد يوصلنا إلى أهم لحظات علوم الطبيعة؟
المزيد من الأشياء لتجربتها
[LIST][*]
ماذا سيحصل باعتقادك إذا أخرجنا الإناء النحاسي من الحوض واستخدمنا عملة معدنية بدلاً من ذلك؟
[*]
[*]
[*]
[*]
[/LIST]
الكاتب: كنوش تقي الدين
نعم, هذا السؤال مطروح فالثورة العلمية التي أحدثتها نظرية الكم في القرن العشرين و التي غيرت تماما الصورة الحتمية لعالم ما قبل الكم صدمت العلماء بصورة أعقد من أن يصفها الخيال, فقد قال ريتشارد فينمان – أحد رواد ميكانيكا الكم – : ” يمكنني القول بأمان أن لا أحد يفهم ميكانيكا الكم “, رأي يشاطره فيه مجتمع كبير من العلماء مثل دانييل غرينبيرغر الذي يقول ” ميكانيكا الكم سحر ” و روجر بنروز عند قوله: ” ميكانيكا الكم غير منطقية إطلاقا “. و يمكن تلخيص غرابة ميكانيكا الكم في ثلاثة تجارب مشهورة:
1- تجربة الشقين:
تجربة بسيطة تتمثل في إرسال حزمة ضوئية عبر شقين متوازيين يواجهان شاشة, يمكن من خلال هذه التجربة إظهار أن فوتونا واحدا (الفوتون هو الجسيم الذي يمثل وحدة الضوء) يمكنه التداخل مع نفسه, الشيء الذي اعتبر مستحيلا فيزيائيا من قبل, إذ التداخل يحدث بين موجتين ضوئيتين.
2- تجربة المصباح الضوئي:
تخيل معي السلك داخل المصباح الضوئي يطلق فوتونا واحدا (نفترض) في اتجاه عشوائي. إروين شرودنغر (أحد رواد نظرية الكم) إستخرج معادلة بطول تسعة صفحات التي تتنبأ بصحة باحتمال إيجاد ذلك الفوتون في أي نقطة من الفضاء نختارها. فقد مثل بموجة مثل تلك الصادرة عن سقوط حجر في بركة, هذه الموجة صادرة عن ذلك السلك المشع. و في لحظة محاولة رؤية الفوتون هذه الموجة (الدالة) تختزل إلى نقطة واحدة تمثل مكان الفوتون.
3-قط شرودنغر:
دقائق نفتح الصندوق لنرى حالة القط هل هو ميت أم حي. السؤال هو: في أي حالة هو عليها القط بين لحظة تشغيل الجهاز و فتح الصندوق. في الحقيقة لم يقم أحد بهذه التجربة بعد لكنها تظهر تناقضا بالنسبة لبعض تفسيرات نظرية الكم.
إن التفكير بهذه التجارب ( تفكير حقا ينهك العقل) يجعلك تفكر في إحدى النقاط التالية:
1- إن الوعي الشخصي يؤثر في سلوك الجسيمات ما تحت الذرية.
2- الجسيمات تتحرك عبر الزمن إلى الأمام و إلى الخلف.
3- إن الكون ينقسم كل وحدة وقت بلانك (تساوي 10 E-43 ثانية) إلى ملايين من الأكوان المتوازية.
4- أن الكون متصل بتنقلات للمعلومات تفوق سرعة الضوء.
هذا النقاط تمثل جوهر التفسيرات الحالية المختلفة لنظرية الكم, و لا تقل الواحدة غرابة عن الأخرى.
نضيف إلى ذلك ما أثبته كرت غودل في برهانه على عدم كمال و تناسق أي نسق رياضي, البرهان الذي ضرب في عمق التفكير العلمي, إذ وضع الشك في أداته الأولى الرياضيات. ملخص هذه النظرية هو:[5]ا
ا1- إذا كان نظام ما متناسق فيستحيل إثبات أنه كامل.
ا2- أن تناسق أكسيومات (مسلمات) نظام ما يستحيل إثباته داخل ذلك النظام.
هتان النقطتان تجعلان الثقة في الكمال الرياضي و الصحة الرياضة المطلقة أمران يتجادل حولهما, و هذا له كل الإنعكاس على الإيمان بالرياضيات كلغة يمكنها وصف العالم و قوانينه.
و في سنة 1989 نشر العالم الإنجليزي روجر بنروز كتابا بعنوان ” عقل الإمبراطور الجديد”[2] تحدث فيه عن التحديات الكبرى التي تواجه نظرية الكم في محاولتها لتفسير العالم و قوانينه, و المثير للاهتمام في كتابه أنه أظهر ذلك الارتباط القوي و الخفي بين مجالات المعرفة, و كيف أنها – المعرفة- كلٌّ واحد, و البحث عن نظرية كل شيئ لن يتم إن تجاهلنا أي مجال معرفي, حتى الميتافيزيقي, فمفاهيم مثل ‘الوعي’ و ‘التفكير’ ظهر ارتباطها المباشر مع نظرية الكم من حيث تأثير الوعي و التجربة الشخصية على خصائص العالم الحسي, و آخر دراسات علم الأعصاب تشير إلى أن الظواهر الفيزيائية التي تحدث ما يسمى بالوعي في عقولنا تخضع لظواهر كمية أي أنها تخضع لنفس الغرابة و الغموض اللتان تغطيان ميكانيكا الكم. ففي مقال في مجلة أمريكا العلمية لعام 2022 بعنوان “كيف يصنع الدماغ العقل”[3] أظهر فيه أنتونيو ر.داماسيو كيف أن ظواهر كمية تحكم عمل ما يسمى بالقنوات الميكروسكوبية التي تدخل في أداء العقل لوظائفه.
و كذلك فالنظر إلى مؤلفات لكبار العلماء و أخصائيي المجال [4] تظهر أن خلاصة نتائج نظريات كمية مثل النظرية الخيطية و النظرية ‘أم’ و كذلك النموذج القياسي لفيزياء الجزيئات, تفيد بأن العالم المادي الذي نختبره هو كما قال نيلز بور ” مكون من أشياء لا يمكن وصفها على أنها حقيقية”. و هذه نقطة جوهرية فإن كانت خلاصة علم الفيزياء هي أن العالم في أصله غير مادي أو كما يفيد مبدأ إختزال الموجة أن العالم غير موضوعي و أن التجربة الشخصية هي التي تحدد واقعية العالم, فكيف يمكن للعلم القائم على أساس الموضوعية و دراسة المادة أن يواجه هذا التناقض الجوهري بين منهجه و واقع الطبيعة.
ف ” إذا كانت ميكانيكا الكم صحيحة فهذا يعني نهاية الفيزياء كعلم”[5] و أن الفيزياء لن تعدو أن تكون قضية إيمان و لن تختلف عن أي معتقدات دينية أو فلسفية في النهاية[6], هذه حقيقة تؤرق مجتمع العلماء حقا.
وكرد فعل على هذه النتائج يقول روجر بنروز , أنه لنستطيع فهم أنفسنا و العالم نحتاج للبدء في البحث عن أدوات جديدة للعلم تستطيع وصف الظاهرة الكمية و تعطينا الثقة في نتائجها.[7]ا
إن الدافع الأول الذي يحرك الروح الإنسانية باتجاه العلم و البحث فيه هو ذلك الفضول الفطري فينا, و تلك الرغبة لإضافة المزيد للمعرفة الإنسانية, و هذا ما ينتج الإبداع و الثورات العلمية الواحدة تلو الأخرى, و من المؤكد أن العلم سينتهي و يتوقف تماما إن توقفنا عن ممارسته, و الاستمرار في طريقه يبقي دائما أمل تجاوز الحدود الحالية و إيجاد أفكار و مجالات جديدة تغذي هذا الفضول, لذلك فرغم أن العلم و الفيزياء بالشكل الحالي تبدو محدوديتهما في إجابة أسئلتنا الجوهرية, فإن ذلك ليس مدعاة للتوقف أو إنهاء الطريق, بل هو مدعاة لفتح الآفاق و إعادة النظر في مفهوم العلم و علاقته بمجالات الحياة الإنسانية الأخرى كالدين و الفلسفة.
أي بمعنى علينا إعادة النظر في مفهوم الحقيقة و كيفية البحث عنها.
و كما قال الغزالي “ويجب علي كل من لا يقف علي كنه هذه المعاني وحقيقتها ولم يعرف تأويلها والمعني المراد به أن يقر بالعجز ، فان التصديق واجب وهو عن دركه عاجز فان ادعي المعرفة فقد كذب
م.
بالتوفيق
صابر البيروني
اليكم دليل الفيزياء
م
نفع الله به
القوة :- تقاس بوحدة النيوتن في النظام الدولي للوحدات .
والقوة إما دفع وإما سحب .
تعمل القوة المؤثرة على جسم ما إلى تسارعه وكذلك على تغيير اتجاه حركة الكرة ..
تأثير مجموعة من القوة على جسم :-
1-عندما تؤثر قوتان في الإتجاه نفسه ،فإن القوة المحصلة تساوي مجموعهما .
2-إذا أثرت قوتان متساويتان على جسم ولكن باتجاهين متعاكسين ،فإن القوة المحصلة تساوي صفر.
3-إذا أثرت قوتان غير متساويتان على الجسم وباتجاهين متعاكسين ،فإن القوة المحصلة تساوي الفرق بينهما وتكون باتجاه القوة الأكبر .
القانون الأول لنيوتن[1]
[الجسم المتحرك لا يغير من حركته ما لم تؤثر عليه قوة غير متزنة ]
الاحتكاك :-قوة ممانعة تنشأ بين سطوح الأجسام المتلامسة وتقاوم حركة هذه السطوح بالنسبة لبعضها بعضاً .
وتؤثر قوة الاحتكاك دائماً في عكس اتجاه الحركة.
لكي نحافظ على حركة الجسم في وجود الاحتكاك عليك أن تؤثر فيه دائماً بقوة تتغلب على قوة الاحتكاك .
القصور الذاتي :-هي مقاومة الجسم لإحداث تغيير في حركته ،ويتناسب القصور طردياً مع الكتلة أي كلما زدات كتلة الجسم زاد قصوره الذاتي .
قانون نيوتن الثاني :-
[إذا أثرت قوة محصلة في جسم ما فإن تسارع هذا الجسم يكون باتجاه تلك القوة ،وهذا التسارع يساوي قسمة القوة المحصلة على كتلة الجسم ].
القانون الأول لنيوتن[1]
قانون نيوتن الثاني :-
[إذا أثرت قوة محصلة في جسم ما فإن تسارع هذا الجسم يكون باتجاه تلك القوة ،وهذا التسارع يساوي قسمة القوة المحصلة على كتلة الجسم ]
القانون الثالث لنيوتن
.
نفع الله بها
رسل شعاعين من رأس الجسم
الأول موازي للمحور الأساسي ( الأصلي ) ينكسر بحيث يمر من بؤرتها
الثاني يمر من المركز البصري فإنه ينفذ دون أن ينكسر
فتتكون الصورة عند نقطة تقاطع الشعاعين النافذين .
ب- ما هي صفات الصورة : بعد رسم الصورة نحدد صفاته كما يلي :
1. تكون الصورة حقيقية اذا تكونت من تلاقي الأشعة المنعكسة وتكون تقديرية اذا تكونت من تلاقي ممددات هذه الأشعة .
2. تكون الصورة صحيحة اذا تكونت فوق المحور الأصلي وتكون مقلوبة اذا تكونت تحت المحور الأصلي .
3. تكون الصورة أصغر من الجسم اذا كانت أقصر منه وتكون أكبر من الجسم اذا كانت أطول منه .
4. نحدد موقع الصورة حسب موقعها بالنسبة للعدسة والبؤرة و مركز التكور .
نفع الله بها